	Name:
U * U * >=====	Teacher:
	Class:
FADER EST FORTUNAE	

FORT STREET HIGH SCHOOL

2010

HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 1

Mathematics Extension 1

TIME ALLOWED: 45 MINUTES

Outcomes Assessed	Questions	Marks
Applies appropriate techniques to solve problems involving parametric	1,2	/19
representations		
Applies appropriate techniques from the study of calculus to solve problems	3	/9

Question	1	2	3	Total	%
Marks	/5	/14	/9	/28	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started in a new booklet

Question 1 (5 marks)

- a) Write the Cartesian equation which is described by the parametric equations $x = t + 1, y = \frac{1}{t}$
- b) i) Find the equation of the chord of contact of the tangents from the point T(3,-2) to the parabola $x^2 = 8y$

ii) Show that this chord of contact passes through the focus of the parabola 2

2

1

3

4

1

Question 2 (14 marks)

a) $P(2ap, ap^2)$, $Q(2aq, aq^2)$, $R(2ar, ar^2)$ are points on $x^2 = 4ay$ i) If the tangent at P is parallel to the chord QR, find the gradient at P and hence show that q + r = 2p 3

ii) M lies on QR such that RM = MQ prove that PM is parallel to the axis of the parabola.

b) i) Show that the equation of the line from the focus S of the parabola $x^2 = 4ay$ and perpendicular to the normal through the point P $(2ap, ap^2)$ on the parabola is px - y + a = 0.

ii) If these lines meet at N, show that the locus of N as P moves on the parabola $x^2 = 4ay$ is also a parabola.

iii) State the vertex and focus of the locus.

Question 3 (9 marks)

a) i) Show that there is a root for $f(x) = x^3 - 3x - 4$ in the domain $2 \le x \le 3$	2
ii) Use two applications for Halving the Interval method to determine an approximation for the root correct to 2 decimal places	3
iii) Use one application of Newton's method to determine an approximation for root correct to 2 decimal places	[.] the 1

b) Take x = 1.3 and use two applications of Newton's method to find the cube root of 2. Give answer to 2 decimal places. 3

Matternatics Extension 1, Task 1 2000
St a)
$$x = \pm \pm 1$$
, $y = \pm \pm \pm 1$
 $\pm 2 = 1$
 $y = \pm -1$
b) 1)
Chord of contact is $xx_1 = 2a(y^{\pm}y_1)$
 $x = 8y$ $\therefore a = 2$ $x_1 = 3$, $y_1 = -2$
 $\therefore 3x = 4(y-2)$
 $3x = 4y = 8$
ii) Focus is $a \pm (0, 2)$
 $z = 0 = 8\pm 2 = 0$ True
so $3x = 4y \pm 8 = 0$
iii) Focus is $a \pm (0, 2)$
 $z = 0 = 8\pm 2 = 0$ True
so $3x = 4y \pm 8 = 0$ passes through
the focus.
62 a)
i) $\frac{x^{\pm}}{4a} = \frac{y}{24}$
 $y' = \frac{2a}{2a}$ and $(2ap, ap^{\pm})$
 $m = \frac{2ag}{24}$
 $= p$
Since tangent is parallel to δR
 $p = m d \delta R$
 $m = \frac{aq^{\pm} - ax^{\pm}}{2a(q-r)}$
 $= \frac{a(q-r)(q+r)}{2}$
 $2p = q+r$.

ł

Milis midpoint of Qe
Milis (
$$\frac{2aq+2ar}{2}$$
, $\frac{aq^{2+ar^2}}{2}$)
 $\left(\frac{2a(qtr)}{2}$, $\frac{a(q^{2+r^2})}{2}\right)r$
 $\left(\frac{2a(qtr)}{2}$, $\frac{a(q^{2+r^2})}{2}$
 $\left(\frac{2a(qtr)}{2}\right)r$
 $\left(\frac{2a(qtr)}{2}\right)r$
 $\left(\frac{2a(qtr)}{2}$, $\frac{a(q^{2+r^2})}{2}$
 $\left(\frac{2a(qtr)}{2}\right)r$
 $\left(\frac{2a(qt)}{2}\right)r$
 $\left(\frac{2a(qt)}{2}\right)r$
 $\left(\frac{2a(qt)}{2}\right)r$
 $\left(\frac{2$

$$g(17p) = i$$

$$= a(p^{2}+i)^{2}$$

$$y = a(p^{2}+i) - a$$

$$= a(p^{2}+i)^{2}$$

$$y = a(p^{2}+i) - a$$

$$= a(p^{2}+i)^{2}$$

$$y = a(p^{2$$

$$f'(x) = 3x^{2} - 3, \quad f'(2 \cdot 13) = 10 \cdot 6107$$

$$x_{1} = 2, 1 - \frac{f(x_{1})}{f'(x_{1})}$$

$$= 2.13 \pm 0.72(403)$$

$$i = 1.3 \pm 0.72(403)$$

$$i = 1.26(143984)$$

$$i = 1.26(143984)$$

$$i = 1.26(143984)$$

$$i = 1.26(143984)$$

$$i = 1.26(1420)$$

je,